World-class training for the modern energy industry

Seals, Containment and Risk for CCS and Hydrogen Storage (G570)

Tutor(s)

Richard Swarbrick: Manager, Swarbrick GeoPressure.

Overview

This course examines the nature and properties of seals as they relate to containment for permanent storage of CO2 and cyclical storage of hydrogen and/or compressed air. The course will provide a grounding in the geomechanics of seals and how seals and their properties are created in the subsurface. While most data and analysis relating to seals has been acquired from and applied to the containment of oil and gas, this course will show how such data can be applied to CCS and gas storage. Particular attention will be given to the different sealing requirements of CO2 and hydrogen relative to oil/gas and water.

Duration and Logistics

Classroom version: A 3-day course comprising a mix of lectures, case studies and exercises. The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: Five 3.5-hour interactive online sessions presented over 3 to 5 days comprising a mix of lectures and exercises. The course manual will be provided in digital format.

Level and Audience

Advanced. This course is aimed at geoscientists and engineers working in energy transition with responsibility for projects to assess and manage gas storage

Objectives

You will learn to:

  1. Evaluate the nature of containment seals and their properties in the deep earth (>1km/0.62 miles below surface).
  2. Apply knowledge of seal integrity to estimates of column heights and associated storage volumes.
  3. Assess the concepts of seal integrity and how to predict risk of seal breach/failure.
  4. Appraise current knowledge of seal behaviour using case studies.
  5. Manage the requirements for permanent CO2 storage using CCS versus short-term/cyclic storage for hydrogen air.
  6. Characterize data requirements and limitations to assess seal integrity and risk (data sourced mainly from oil/gas boreholes).
  7. Evaluate different trapping requirements for gas storage (currently data-poor) relative to oil/gas (historically data-rich).
  8. How geochemical fluid-rock reactivity may impact seals to gas storage over time.

Carbon Capture and Storage Value Chain: Network Design and Operational Technologies (G571)

Tutor(s)

Matthew Healey: Managing Director, PACE CCS.

Overview

This course is designed to provide awareness of the design and operation of CCS systems. Participants will gain knowledge and understanding of technical issues (flow assurance, process, safety, etc.) encountered in the design and operation of whole-chain CCS systems.

Duration and Logistics

Classroom version: A 2-day in-person classroom course. An electronic copy of the manual will be provided by the tutor at the end of the course.

Virtual version: Four 3.5-hour interactive online sessions presented over 4 days, including a mix of lectures and discussion. The course manual will be provided in digital format.

Level and Audience

Advanced. This course is suitable for all technical staff engaged in carbon capture and storage with an emphasis on the operations, facilities and engineering side of the business. Project managers and engineers will also find many aspects of the course useful.

Objectives

You will learn to:

  1. Compare the primary CO2 capture technologies.
  2. Review the fundamental subsurface geoscience aspects of CCS, including reservoirs, leakage and monitoring.
  3. Establish how CO2 can be transported safely and efficiently via ship and pipeline.
  4. Assess the thermodynamic behavior of CO2 including the impact of impurities in CO2 streams.
  5. Describe the operating philosophy and modes of CO2 transport networks, both single and multiphase.
  6. Outline the design specifications of CCS networks with a focus on pipelines.
  7. Manage safety and technical risk, including using a consequence-based risk assessment for CCS.
  8. Evaluate the thermal-hydraulic modelling of CO2 transport networks with a focus on best practices.
  9. Analyze the shipping options for CO2, including port to port or port to storage.
  10. Characterize CCS metering and associated technologies.

The Low Carbon Business for Operations Staff: Business, Geoscience and Engineering Fundamentals (G569)

Tutor(s)

Ben Klooss: Chief Operating Officer and Partner, Camberwell Energy.

Gioia Falcone: Rankine Chair of Energy and Engineering, University of Glasgow.

Bob Harrison: Director, Sustainable Ideas Ltd.

Overview

This course aims to provide a broad overview of notable non-technical and technical themes for those operations staff new to low-carbon business projects. The course will be divided into three principal themes: business, geoscience and engineering; and will look to combine knowledge from across the different low-carbon business streams (CCS, geothermal and hydrogen). Participants will come away with a broad knowledge of the business landscape and of the subsurface and operational engineering challenges and limitations.

Duration and Logistics

Classroom version: Three half-day sessions, totaling 1.5 days in-person classroom training.

Virtual version: Three 4-hour interactive online sessions presented over 3 days. In each case a digital manual will be provided for the participants.

Level and Audience

Fundamental. This course is aimed at production and surface engineering technical staff and managers with a background in oil and gas but limited exposure to the low-carbon business, who want an overview and appreciation of this new energy landscape, the skills required and the technical challenges.

Objectives

You will learn to:

  1. Outline the current and likely future status of the European energy mix, including new energy sources and the drive towards Net Zero.
  2. Understand the regulatory, policy and financial drivers for adopting these new energy sources.
  3. Apply learnings from oil and gas projects to the subsurface and engineering challenges posed by these new energy systems.
  4. Recall the basic principles of heat generation in the subsurface and the associated key characteristics of geothermal resources and reservoirs.
  5. Appreciate the risks and uncertainties in developing geothermal resources.
  6. Understand the subsurface requirements for CO2 storage and the associated leakage risk.
  7. Assess the volumetrics of CO2 storage and flow away from injector wells, as controlled by reservoir properties.
  8. Describe the different geological storage options for hydrogen, their capacity and storage integrity challenges.
  9. Appreciate how the handling of CO2, hydrogen and heat is different from oil and gas.
  10. Outline the different operational facilities requirements of new energy types, including design and lifetime.

Induced Seismicity in Geothermal Fields (G568)

Tutor(s)

Emmanuel Gaucher: Senior Research Geophysicist, Geothermal Energy and Reservoir Technology, Karlsruhe Institute of Technology.

Overview

This course covers fundamental and practical aspects associated with induced seismicity in deep geothermal fields. A refresher of the most relevant rock mechanics and seismological aspects will be followed by a review of the main observations and modelling approaches. Monitoring concepts for risk mitigation or reservoir imaging will also be presented.

Duration and Logistics

Classroom version: A 2-day course comprising a mix of lectures, case studies and exercises. The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: Four 3.5-hour interactive online sessions presented over 4 days. A digital manual will be distributed to participants before the course. This course will also contain practical exercises to reinforce key learnings. (In the virtual sessions, individual simplified questions will be asked; for a classroom version of the course, attendees will work in small groups.)

Level and Audience

Intermediate. The course is intended for geoscientists wishing to learn what seismicity in geothermal fields is, how it is induced and how we could mitigate it while using it for imaging purposes. Geoscientists from the oil and gas industry sensitive to hydrofrac operations can also join to understand differences.

Objectives

You will learn to:

  1. Assess induced seismicity characteristics to gain critical information, such as location, magnitude and fault plane solutions.
  2. Evaluate the pros and cons of the methods used to determine seismic information.
  3. Design the main features of a seismic monitoring network for specific monitoring objectives within a given geological context.
  4. Propose appropriate sensor deployment type(s), data management procedures and processing sequence.
  5. Identify the main drivers for induced seismicity in a geothermal field.
  6. Predict likely operations that could induce seismicity according to subsurface properties and structures, and identify the most critical ones.
  7. Propose appropriate mitigation approaches taking account of the subsurface characteristics and operations proposed.

Carbon Capture and Storage: Legal, Regulatory, Finance and Public Acceptance Aspects (G566)

Tutor(s)

Mike Stephenson: Director, Stephenson Geoscience Consultancy Ltd.

Overview

Carbon Capture and Storage (CCS) is a new technology that has a vital place within global efforts to decarbonise. It has a unique set of challenges, opportunities and risks to be understood and accommodated within appropriate legal, regulatory, and social and public licence frameworks. The course will provide up to date and relevant information to help in understanding opportunities and in managing risk. The course will cover: the role of CCS within a decarbonised energy system; risks of capture, transport and storage; aspects of monitoring; the importance of test and demonstration sites; legal and regulatory; finance; and public acceptance and social licence.

Duration and Logistics

Classroom version: A 1-day course comprising a mix of lectures, case studies and exercises. The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: Two 3.5-hour interactive online sessions presented over 2 days. A digital manual will be distributed to participants before the course, which will be a mix of lectures and exercises.

Level and Audience

Fundamental. This course will cater for in-company legal specialists, project managers, marketing and communications specialists; as well as planners and environmental scientists in regulatory roles in regions considering the development of CCS.

Objectives

You will learn to:

  1. Understand the place of CCS within a decarbonized energy system.
  2. Demonstrate the basics of the science and risk in capture, transport and storage.
  3. Illustrate the role of monitoring and MMV (Measurement, Monitoring and Verification).
  4. Examine how legal and regulatory frameworks respond to the challenges of CCS.
  5. Establish how CCS could be financed.
  6. Relate to and understand public opinion and social licence in relation to CCS.

Geomodelling for CO2 Storage (G560)

Tutor(s)

Matthew Jackson: Chair in Geological Fluid Dynamics, Imperial College London.

Overview

This course provides an overview of all subsurface aspects of geomodelling relevant to CO2 storage. The course includes an introduction to the principles and practice of geomodelling; reservoir characterization for CO2 storage, including geological, geophysical and petrophysical considerations; methods used to produce 3-D geomodels; approaches to uncertainty characterization and quantification; and an overview of available software tools. The course does not provide hands-on training in these software tools, but rather provides the background understanding for software tool selection and associated training from vendor(s). The concepts and methods are illustrated using numerous practical examples of geomodelling studies.

Duration and Logistics

Classroom version: A 3-day course comprising a mix of lectures, case studies and exercises. The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: Five 3.5-hour interactive online sessions presented over 5 days. A digital manual and exercise materials will be distributed to participants before the course. Some reading and exercises are to be completed by participants off-line.

Level and Audience

Advanced. The course is intended for professionals with experience of, or background in, a related subsurface geoscience area and those directly working on CO2 storage projects.

Objectives

You will learn to:

  1. Characterize the underlying aims and concepts of ‘fit for purpose’ reservoir geomodelling.
  2. Prepare different types and associated applications of geomodels for CO2 storage.
  3. Validate reservoir characterization data for CO2 storage, including geology, geophysics and petrophysics.
  4. Assess methods for quantitative 3-D geomodel construction, including advantages and disadvantages of each.
  5. Manage performance metrics for geomodels.
  6. Appraise the importance of, and methods for, quantitative uncertainty assessment.
  7. Rate the different software tools used for geomodelling.
  8. Evaluate practical examples of geomodelling for CO2 storage.

The Fundamentals of Hydrogen Energy (G903)

Tutor(s)

Kevin Taylor: Professor in Energy Geoscience, University of Manchester.

Overview

The aim of this course is to give an overview of the fundamental aspects of the current hydrogen energy landscape. This will include a range of topics, including what hydrogen is and why it can potentially be a significant fuel and energy carrier, the different methods in which it can be produced, its potential role in decarbonization of energy and heat, how it can be stored in the subsurface, and its place overall within the energy transition.

Duration and Logistics

Classroom version: A half-day course comprising a mix of lectures, case studies and exercises. The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: One 3-hour interactive online session. A digital manual and exercise materials will be distributed to participants before the course.

Level and Audience

Awareness. The course is aimed at non-technical staff and those who do not have a scientific background but want a basic introduction to the topic. The subject matter will be covered from very basic principles and will be of interest to staff from a range of departments, including legal, graphics, administration and technical support.

Objectives

You will learn to:

  1. Understand what hydrogen is and why it can be used as a fuel and energy carrier.
  2. Describe how hydrogen can be produced and the resulting different types and terminology.
  3. Appreciate the role hydrogen can play in decarbonizing energy and heat, and the competing demands in the hydrogen energy landscape.
  4. Appreciate the different storage options for hydrogen, particularly in the subsurface.
  5. Recall details of the developing hydrogen supply chains, including infrastructure and distribution networks.

The Fundamentals of Carbon Capture and Storage (G902)

Tutor(s)

Richard Worden: Professor in the Department of Earth Ocean and Ecological Sciences, University of Liverpool, UK.

Overview

The aim of this course is to provide an overview of what carbon capture and storage is, how it works and its role in decarbonization and the energy transition.

Duration and Logistics

Classroom version: A half-day course comprising a mix of lectures, case studies and exercises. The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: One 3-hour interactive online session. A digital manual and exercise materials will be distributed to participants before the course.

Level and Audience

Awareness. The course is aimed at non-technical staff and those who do not have a scientific background but want a basic introduction into the topic. The subject matter will be covered from very basic principles and be of interest to staff from a range of departments, including legal, graphics, administration and technical support.

Objectives

You will learn to:

  1. Understand what carbon capture and storage is.
  2. Appreciate why carbon capture and storage is needed to reduce emissions.
  3. Outline how carbon capture and storage works.
  4. Discuss carbon capture and storage project risks and uncertainties.

The Fundamentals of Wind and Solar Power (G907)

Tutor(s)

Brian Matthews: Independent Consultant, Founder and Managing Director of TerraUrsa.

Overview

The aim of this course is to provide an overview of wind and solar power technology, how it works and its role in decarbonization and the energy transition.

Duration and Logistics

Classroom version: A half-day course comprising a mix of lectures, case studies and exercises. The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: One 3-hour interactive online session. A digital manual and exercise materials will be distributed to participants before the course.

Level and Audience

Awareness. The course is aimed at non-technical staff and those who do not have a scientific background but want a basic introduction into the topic. The subject matter will be covered from very basic principles and be of interest to staff from a range of departments including legal, graphics, administration and technical support.

Objectives

You will learn to:

  1. Understand why there is a need to transition to renewable energy.
  2. Recall the challenges of a Net Zero energy transition.
  3. Appreciate how wind and solar power technology works and what the management of an asset looks like through its life.
  4. Describe what the business opportunities are for using, developing and investing in renewable energy.
  5. Have an awareness of what the policy and government strategies are that support a Net Zero transition.

The Fundamentals of Geothermal Energy (G904)

Tutor(s)

Mark Ireland: Lecturer in Energy Geoscience, Newcastle University.

Overview

The aim of this course is to provide an overview of what geothermal energy is and how it can be used in our modern world.

Duration and Logistics

Classroom version: A half-day course comprising a mix of lectures, case studies and exercises. The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: One 3-hour interactive online session. A digital manual and exercise materials will be distributed to participants before the course.

Level and Audience

Awareness. The course is aimed at non-technical staff and those who do not have a scientific background but want a basic introduction to the topic. The subject matter will be covered from very basic principles and will be of interest to staff from a range of departments, including legal, graphics, administration and technical support.

Objectives

You will learn to:

  1. Understand what geothermal energy is.
  2. Outline the applications and use of geothermal energy.
  3. Describe the key characteristics of geothermal resources.
  4. Discuss geothermal project risks and uncertainties.