World-class training for the modern energy industry

Energy Transition and Sustainability: Economic and Policy Perspectives (G910)

Tutor(s)

Brian Matthews: Independent Consultant, Founder and Managing Director of TerraUrsa


Overview

The aim of this course is to provide an overview of the economic and market opportunities of renewables in the context of European decarbonisation policies and targets.


Duration and Logistics

Classroom version: Two-day classroom workshop.

Virtual version: Option 1: One 3-hour interactive online session that would cover contents sections 1-4. Option 2: Two 3-hour interactive online sessions would include content sections 1-6.


Level and Audience

Fundamental. The one-session course is aimed at non-technical staff and those who do not have a business background but want a basic introduction to the topic. The subject matter will be covered from very basic principles and will be of interest to staff from a range of departments.  The two-session course is aimed at middle and senior managers who can influence strategy within the company.


Objectives

You will learn to: 

  1. Understand global and European energy demand trends to 2050.
  2. Explore the economic and market opportunities of renewables.
  3. Analyse primary energy supply projections and the role of different energy sources.
  4. Examine European decarbonisation policies and targets.
  5. Evaluate case studies to assess market context, policy drivers, and commercial strategies.
  6. Develop and assess a sustainability timeline.

Structural Styles and Tectonics: Advanced Interpretation and Evaluation Workshop (G118)

Tutor(s)

Douglas Paton: Director, TectoKnow.


Overview

The workshop is a follow on from the introductory course G111 and will focus on developing the concepts and skills presented therein. It will go into more detail on the structural styles for each tectonic setting and outline the uncertainty in sub-surface data that has to be considered.


Duration and Logistics

Classroom version: A 4-day course comprising a mix of lectures and exercises. The manual will be provided in digital form and participants will be required to bring a laptop or tablet computer to follow the lectures.


Level and Audience

Intermediate. The course is aimed at more experienced subsurface geoscientists who want to focus on the structural uncertainties in data, at all scales.


Objectives

You will learn to:

  1. Appraise the impact of normal fault identification and fault mapping on reservoir understanding.
  2. Gauge the limitations of seismic imaging for reverse faults, their temporal variation and impact on reservoir presence and distribution.
  3. Validate strike-slip deformation on seismic sections and reconstruct the 3D and 4D evolution of strike-slip systems.
  4. Evaluate negative and positive structural inversion and its impact on hydrocarbon systems and basin fill.
  5. Manage the impact of deformation close to or beyond seismic resolution with respect to subsurface prediction and modeling.

Structural Geology: Key Concepts for Exploration and Production (G111)

Tutor(s)

Douglas Paton: Director, TectoKnow.


Overview

The workshop will be practically based, supplemented by a number of group thought experiments. It will cover an introduction to the fundamentals of structural geology and its impact on hydrocarbon distribution and prediction. It will then outline, with examples, the essential geometric components expected in normal faults / rift basins, reverse faults / contractional environments, inversion / multi-phase settings, and salt and strike-slip influenced systems.


Duration and Logistics

Classroom version. A 4-day course comprising a mix of lectures, case studies and exercises. The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.


Level and Audience

Fundamental. The course is aimed at new hires who need a thorough introduction to the fundamentals of structural geology.


Objectives

You will learn to:

  1. Understand the fundamental importance of structural geology in modelling the subsurface.
  2. Appreciate the concept of structural styles and why it is essential to aid the interpretation of subsurface and outcrop data.
  3. Assess input data required for resource modelling and appreciate its limitations.
  4. Apply relevant and appropriate models to areas of limited data or zones of complexity and capture the implications of the inherent uncertainty.
  5. Apply relevant techniques and understanding to enhance resource prediction in extensional, compressional and multi-phase settings, including salt.
  6. Appreciate the importance of developing a structural robust understanding for any energy transition resource model.

Introduction to Log Analysis and Petrophysical Characterization (G104)

Tutor(s)

Joe Landry: President, Petrophysical Solutions Inc.

Overview

This course will review basic interpretation techniques from conventional logs with a focus on key reservoir properties.

Duration and Logistics

Classroom version: A three-day classroom course comprising a mixture of lectures and exercises. The course manual will be provided in digital format.

Level and Audience

Fundamental. This course is designed for those without any experience or familiarity with logs.

Objectives

You will learn to:

  1. Introduction and review of key rock properties and terminology used.
  2. Understand the wellbore environment and how this can affect the data acquired.
  3. Review data types and acquisition technologies.
  4. Understand log types and evaluate appropriate display scales.
  5. Evaluate and QC log data.
  6. Review the Archie equation and how it is used to determine water saturation.
  7. Understand the limitations and pitfalls of the described interpretation techniques particularly with respect to deepwater reservoirs in the Gulf of Mexico.

Understanding Seismic Data: Time, Depth and Geology (G082)

Tutor(s)

David Kessler: President, SeismicCity Inc.

Ron Kerr: Seismic Processing Consultant.

John Byrd: President, ByrdGEO; Adjunct Professor of Geology, University of Utah.

Overview

This course is designed to provide seismic interpreters, managers, geophysicists and geologists with a broad understanding of seismic imaging and processing. Emphasis will be placed on an understanding of industrial methods and workflows, differentiation of signal from artifacts, and connecting seismic data to geological settings for prospect evaluation and generation. The limited amount of quantitative seismic theory that is included is linked to the fundamentals of seismic data acquisition and processing, imaging, model building and interpretation through the incorporation of case studies. The eight course sessions continually build on the material from previous sessions and are tied to the underlying geology.

Duration and Logistics

A 4-day in-person classroom course, consisting of lectures and exercises. A digital manual will be provided for the course.

Level and Audience

Intermediate. The course is intended for seismic interpreters and geologists involved in the use and evaluation of seismic data.

Objectives

You will learn to:

  1. Outline the principal strengths and limitations of depth imaging.
  2. Assess the uncertainties of depth imaging and strategies to reduce these.
  3. Establish the fundamentals of marine- and land-based seismic from acquisition to pre-processing.
  4. Examine the processing steps leading to post- and pre-stack time migration, and post-stack depth migration.
  5. Evaluate various migration parameters used in the application of pre-stack depth migration and how they affect the PSDM image.
  6. Gauge the accuracy of time to depth conversion by application of pre-stack depth migration, as well as seismic to well tie and residual depth correction.
  7. Demonstrate the fundamental differences between depth and time migration and the improved imaging results when depth migration is utilized to resolve lateral velocity variations.
  8. Evaluate the link between the pre-stack depth image and the underlying geological settings.
  9. Analyze the complex structural geometries associated with salt tectonics and their significant associated imaging challenges.
  10. Differentiate signal from artifacts.
  11. Assess the construction of geological models utilizing our common understanding of velocity estimation, anisotropic parameters and different geologic settings.
  12. Connect seismic data to geological settings for prospect evaluation and generation.

Carbonate Depositional Systems: Reservoir Sedimentology and Diagenesis (G105)

Tutor(s)

Paul Wright: Independent Consultant.

Overview

This course is aimed at those with little or no previous experience with carbonate rocks as reservoirs or aquifers. A broad introduction to carbonate systems is presented, with multiple case examples interspersed throughout the course, in order to illustrate the different types of carbonate deposition, stratigraphy and diagenesis. Besides reviewing the essential components and origins of such rocks, it also illustrates how key characteristics are identified from seismic data and the issues relating to flow behaviour. Participants will attain a broad understanding of carbonate rocks – their components, depositional models and diagenetic variation – to better assist in the prediction of carbonate reservoirs from seismic to pore scale.

Duration and Logistics

Classroom: A 4.5-day in-person classroom course. Digital course notes and exercise materials will be distributed to participants before the course.

Virtual version: Nine 3.5-hour interactive online sessions. Digital course notes and exercise materials will be distributed to participants before the course.

Level and Audience

Fundamental. The course is intended for geoscientists (geologists and geophysicists) and petroleum engineers with little or no experience of carbonate reservoirs.

Objectives

You will learn to:

  1. Understand and describe the principal carbonate sediment components and systems of carbonate classification.
  2. Describe the primary controls on carbonate deposition temporally and spatially, and discuss the contrasts between the controls on siliciclastic deposition.
  3. Describe the main types of carbonate platform, their variability, scale, main seismic features and distribution of likely reservoir units.
  4. Demonstrate sequence stratigraphic aspects of carbonate build-ups, their differing response to SL change compared to clastic sediments and discuss their seismic characters.
  5. Review principal types of likely reservoir facies (platform interior, carbonate sands, reefs, slope systems and chalks), their recognition, architecture, sequence stratigraphy and porosity types.
  6. Identify the diverse pore types in carbonates and how these relate to reservoir quality.
  7. Understand how the development of primary and secondary porosity has varied through geological time and how these changes impact reservoir quality.
  8. Explain how the variety of diagenetic environments affects primary and secondary porosity in carbonate rocks and understand the implications for reservoir quality.
  9. Understand the uses of the main techniques for deciphering diagenetic sequences in carbonates.
  10. Discuss the principal modes of formation of dolomites and the predictive uses of different dolomite models.
  11. Understand the diverse origins of palaeokarstic macroporosity, its subsurface recognition, and different strategies for developing palaeokarstic systems for geothermal energy and hydrocarbon reservoirs.

Geothermal Sedimentary Systems: Exploration, Development and Production Principles (G574)

Tutor(s)

Mark Ireland: Senior Lecturer in Energy Geoscience, Newcastle University.

Overview

This course covers all aspects of various sedimentary geothermal systems, from exploration through to production. It is intended as an introduction to the entire lifecycle of sedimentary geothermal resources, covering aspects of geoscience and engineering.

Duration and Logistics

Classroom version: A two-day classroom course comprising a mixture of lectures and exercises. The course manual will be provided in digital format.

Virtual version: Four 3.5-hour interactive online sessions presented over 4 days. A digital manual and exercise materials will be distributed to participants before the course.

Level and Audience

Fundamental. The course is intended for all career stage industry professionals and early career researchers with a geoscience or geo-engineering background, including those with a familiarity in oil and gas production.

Objectives

You will learn to:

  1. Understand the basic principles of heat generation within the upper crust.
  2. Describe the key characteristics of sedimentary geothermal resources and reservoirs.
  3. Examine the geothermal play concept.
  4. Establish exploration methods using oil and gas data to assess geothermal resources in sedimentary basins.
  5. Illustrate the development and production options for these geothermal resources.
  6. Appreciate the principle geological hazards, in relation to geothermal projects, including induced seismicity.
  7. Appreciate the range of environmental impacts associated with geothermal developments.
  8. Appreciate project risks and uncertainties in developing geothermal resources.

Integration of Rocks and Petrophysical Logs (G059)

Tutor(s)

Greg Samways: Director, Geolumina.

Overview

This course will focus on a simple petrophysical workflow entailing the determination of rock properties from conventional logs and core analysis data. Lithology, porosity, permeability and saturations will be determined using a variety of different analytical and simple modelling methods. Emphasis will be placed on understanding the importance of calibration, integration, and validation of the results of each method, based on a fundamental understanding of the geological controls on petrophysical properties.

Duration and Logistics

Classroom version: 3-days with a mix of lectures and exercises. The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: Five, 3.5-hour interactive online sessions presented over 5 days. The course will focus on problem-solving using real-world data and use a series of Excel workbooks. A digital manual and exercise materials will be distributed to participants before the course.

Level and Audience

Fundamental. This course is intended for non-petrophysicists who require a grounding in the petrophysical determination of lithology, porosity and saturation from conventional and special core analysis, and conventional open-hole logs.

Objectives

You will learn to:

  1. Understand the fundamental geological controls on reservoir properties.
  2. Describe how these properties are measured in the laboratory using conventional and special core analysis methods.
  3. Characterize the ways in which lithology and porosity are determined from well logs and calibrated with core analysis, and how permeability may be estimated in the subsurface away from core control.
  4. Evaluate how the Archie equation is used to determine saturation in cores and from well logs, and the uncertainties and limitations with this method
  5. Investigate how saturation-height models can be created from special core analysis data, thereby avoiding some of the limitations of the Archie method.
  6. Interpret typical conventional log and core analysis data using Excel spreadsheets.
  7. Experiment with the sensitivities of input parameters for various determinations, such as V-Shale, porosity and saturation.

Essential Data Science for Subsurface Geoscientists and Engineers (G065)

Tutor(s)

David Psaila: Director of Data Science for the Digital Subsurface, Analytic Signal Limited.

Overview

Interest in data science and machine learning is rapidly expanding, offering the promise of increased efficiency in E&P, and holding the potential to analyse and extract value from vast amounts of under-utilised legacy data. Combined with petroleum geoscience and engineering domain knowledge, the key elements underlying the successful application of the technology are: data, code, and algorithms. This course builds on public datasets, code examples written in Python, statistical graphics, and algorithms from popular data science packages to provide a practical introduction to the subject and its application in the E&P domain.

Duration and Logistics

Classroom version: 5 days consisting of lectures and computer-based exercises and practicals.

Virtual version: Ten, 3-hour online sessions presented over 5 days. The course is at an introductory level and all subject matter will be taught from scratch. No prior experience of statistics, Python coding or machine learning is required, although some basic college level knowledge of maths and statistics is useful. Hands-on computer workshops form a significant part of this course, and participants must come equipped with a laptop computer running Windows (8, 10, 11) or MacOS (10.10 or above) with sufficient free storage (4 Gb). Detailed installation instructions are provided in advance so that participants can set up their computer with the data science toolkit and course materials before the course starts.

Level and Audience

Fundamental. This is an introductory course for reservoir geologists, reservoir geophysicists, reservoir engineers, data management, and technical staff who want to learn the key concepts of data science.

Objectives

You will learn to:

  1. Analyse project data using the data science toolkit; notebooks, visualization, and communication.
  2. Perform data import and manipulation, data visualization, exploratory data analysis, and building predictive models from data.
  3. Have a working knowledge of coding in Python.
  4. Coordinate reference systems including geographic and projected coordinate systems.
  5. Use the fundamentals of machine learning including background concepts, the different types of machine learning, and the basic workflow to build and evaluate models from data.

An Introduction to Sequence Stratigraphy (G068)

Tutor(s)

Gary Hampson: Professor of Sedimentary Geology, Imperial College London.

Overview

Sequence stratigraphy is a key tool for subsurface interpretation of depositional systems and thereby predicting the distribution of reservoir, source rock and seal lithologies. The course will introduce the principles and methods of sequence stratigraphy, with a focus on continental, shallow-marine and deep-marine depositional settings. Participants will apply these principles and methods via the sequence stratigraphic interpretation of subsurface data (e.g. seismic, well-log, core, reservoir production data).

Duration and Logistics

Classroom version: 2 days including a mix of lectures and exercises. The course manual will be provided in digital format and participants will be required to bring along a laptop or tablet to follow the lectures and exercises.

Online version: Three 3.5-hour interactive online sessions presented over 3 days. A digital manual will be distributed to participants before the course.

Level and Audience

Fundamental. This course is designed for junior geoscientists working on a variety of subsurface energy projects who want to gain a basic understanding of sequence stratigraphy and its applications to subsurface data sets. Participants should have knowledge of basic sedimentology and subsurface geology.

Objectives

You will learn to:

  1. Understand the basic terminology of sequence stratigraphy.
  2. Describe the key surfaces and systems tracts.
  3. Appreciate the main components of depositional sequences in continental, shallow-marine and deep-marine systems.
  4. Evaluate a range of subsurface data in terms of sequence stratigraphic methods and models.