World-class training for the modern energy industry

Deepwater Clastics: Source-to-Sink Studies in the Exploration of Turbidite Reservoirs, San Diego, California (G103)

Tutor(s)

Zane Jobe: Research Professor, Colorado School of Mines and the Director of the Geology Center of Research Excellence (CoRE).

Overview

The course will visit spectacular outcrops along the California coastline just north of San Diego. Field work will follow a source-to-sink approach and will focus on specific deepwater architectural elements, including canyons, slope channels, channel-lobe-transition-zones and lobes. The course will provide insights into exploration and development themes and challenges in deepwater depositional systems, with direct analogs to Gulf of Mexico reservoirs.

Duration and Logistics

A 6-day field course based in La Jolla, California. Training will take place through in-class presentations, field observations, printed exercises and discussions in the field. Transport will be by coach.

Exertion Level

This class requires a MODERATE exertion level. Access to the coastal cliff outcrops is via sandy beaches with walks no more than 3km (1.9 miles). Field stops are all at approximately sea level and some are tide dependent. There are some steep steps to negotiate to reach some beach sections.

Level and Audience

Intermediate. The course is aimed at geoscientists, engineers, petrophysicists, geophysicists and managers who are working deepwater reservoirs or would like to improve their knowledge of these systems.

Objectives

You will learn to:

  1. Characterize the sedimentary processes and facies of turbidite systems and mass-transport deposits, and the broad nature of submarine depositional architecture.
  2. Evaluate submarine-channel systems, including scales/dimensions, axis-to-margin architecture, evolution, heterogeneity and potential baffles/barriers to flow.
  3. Predict connectivity in channelized systems from their seismic-geomorphic and well-log expression.
  4. Assess submarine canyon forming-and-filling processes, including mass wasting, bypass, sandy and muddy fill, and up-dip trapping mechanisms.
  5. Illustrate the importance of source-to-sink studies in the exploration of turbidite reservoirs.
  6. Evaluate submarine lobe/sheet systems, including scales/dimensions, axis-to-fringe architecture, compensational stacking, hierarchy and heterogeneity (e.g. hybrid-event-beds).
  7. Analyze channel-lobe-transition-zone deposits and supercritical-flow bedforms.
  8. Assess faulting in lobe deposits and impacts on connectivity.
  9. Appraise the facies variability in proximal/axial and distal/fringe lobe deposits, and the implications for connectivity between these sub-environments.

The Geology of the Paradox Basin and Implications for Deepwater Gulf of Mexico Exploration, Moab, Utah (G095)

Tutor(s)

Kate Giles: Lloyd A. Nelson Professor, University of Texas at El Paso; Consulting Geologist.

Overview

The primary technical goal is to provide a widely applicable introduction to the interrelationship between sedimentation and structural geology with a particular focus on salt tectonics and salt-sediment interaction. The geology is examined with reference to deepwater exploration themes with the Gulf of Mexico.

Duration and Logistics

A 4-day field course starting and finishing in Grand Junction, Colorado, comprising a mixture of lectures, field work and exercises.

Level and Audience

Intermediate. This course requires a basic understanding of geoscience and will suit those working in the geoscience, geotechnical and engineering fields. The aim is to facilitate knowledge and experience exchange among the participants, so is open to those from a very wide range of experience levels.

Exertion Level

This course requires a MODERATE exertion level. There will be hikes to outcrops of up to 6.5km (4 miles) round trip. Some of these will encounter uneven and rocky ground with some short, steep inclines. The climate in southern Utah is typically warm to hot and dry with temperatures up to 37.5°C (100°F) and the elevation is between 1,250–1,500m (4,000–5,000 ft).

Objectives

You will learn to:

  1. Describe the regional stratigraphy and principal structural features of the Paradox Basin, Utah.
  2. Characterize and interpret controls on Paradox Basin salt-related structures and key features of passive diapiric systems, including halokinetic sequences, caprock development, non-evaporite stringers / inclusions, welds, megaflaps, counter-regional faults, radial faults and burial wedges.
  3. Examine stratal geometries and halokinetic sequences and how these relate to intervals of salt inflation / evacuation and sediment flux.
  4. Assess the controls on basin fill architecture, fluid flow and deformation within the Paradox Basin and compare this to analogous salt basins worldwide.
  5. Understand the importance of salt basins to the energy industry for hydrocarbon production.

Geologic Carbon Storage at Outcrop: Lessons for Subsurface Characterization, Modeling, Risk and Monitoring, Utah (G579)

Tutor(s)

Alex Bump: Research Science Associate, University of Texas at Austin.

Michael Sweet: Co-Director and Research Scientist, University of Texas at Austin.

Overview

Using outcrops from the Cretaceous and Jurassic of Utah, this course will analyze some of the major subsurface challenges facing the storage of CO2 in subsurface formations, with particular reference to the planned Oligo-Miocene carbon stores on the Gulf Coast. It is intended to give participants the opportunity to consider the key factors of injectivity, capacity and confinement, and the range of storage play concepts available to match project needs with practically accessible storage sites. The course will explore the impact of multi-scale reservoir heterogeneity on migration and trapping of CO2, the propagation and dissipation of pressure, and the risks of unintended lateral or vertical migration of CO2 and/or displaced brine. We will also look specifically at boundary conditions and potential leakage paths, including faults and wells, using a variety of outcrops as a natural laboratory to facilitate the learning points.

Duration and Logistics

A 6-day field course comprising a mix of field activities with classroom lecture sessions and discussions. Transport will be by minivan or bus.

Level and Audience

Intermediate. This course is intended for geoscience and engineering professionals working in, or soon to transfer to, CCS projects.

Exertion Level

This class requires a MODERATE exertion level. There will be some short hikes to outcrops with some of these over uneven and rocky ground. The climate in southern Utah during the spring and fall is variable, with temperatures from 50°F (10°C) to 100°F (38°C). The elevation is between 4,000 and 5,000 feet (1200 and 1500 meters).

Objectives

You will learn to:

  1. Describe the subsurface requirements for a successful storage project, including similarities and differences with oil and gas exploration.
  2. Illustrate the CCS reservoir details of proposed Gulf Coast carbon stores and the state-of-play of these projects.
  3. Characterize the main depositional features that influence reservoir properties and CCS reservoir development, as well as likely performance, with special reference to clastic coastal/shallow marine depositional systems.
  4. Gauge fluid transport parameters, including the impact of geological heterogeneity and permeability on CO2 injection and plume migration.
  5. Evaluate sustainable injection rates for different carbon stores, including pressure propagation and interference, and factors such as loss of injectivity and pressure build-up.
  6. Manage containment risks with respect to both structural and depositional heterogeneities.
  7. Validate models for plume migration and integrate the key uncertainties.

Characterization, Modeling, Simulation and Development Planning in Deepwater Clastic Reservoirs, Tabernas, Spain (G076)

Tutor(s)

Mark Bentley: TRACS International Consultancy and Langdale Geoscience.

Overview

This course is led by a production geologist and reservoir engineer involved in deepwater reservoir development, and is presented as a practical reservoir discussion rather than purely a traditional geological field trip. The objective of this field course is to explore the reservoir modelling and petroleum engineering aspects of deepwater clastic reservoirs. The discussions highlight the linkage from depositional processes to geological architecture and flow heterogeneity in development planning. The Tabernas outcrops are very well exposed and offer examples of sand-rich and debris-flow-dominated reservoirs, high net:gross fan systems and classic mud-dominated facies. In particular, they give excellent insights into the reservoir heterogeneities occurring within apparently continuous ‘sand lobes’ and major channels.

Duration and Logistics

A 7-day field course based in Almeria, Spain, comprising a mix of field activities and exercises. Transport will be by SUV on paved roads and unpaved tracks.

Level and Audience

Advanced. The course is largely aimed at geologists and reservoir engineers working on deepwater developments. The course is best suited to multidisciplinary team of geologists, geophysicists, petrophysicists and reservoir engineers.

Exertion Level

This class requires a MODERATE exertion level. There will be multiple walks of up to 1km (0.5 mile) most days. The longest walk of the class is approximately 2km (1 mile), with an ascent (and descent) of 75m (245 ft). The field area is in Europe’s only desert region and participants should expect high temperatures and an arid working environment. Participants should also be prepared for sudden and heavy rain showers.

Objectives

You will learn to:

  1. Assess the genetic processes that produce slumps, slides, debrites and high/low density turbidites, and explain why the concept of confinement underpins the description of heterogeneity in deepwater clastic systems.
  2. Evaluate the extent to which pay is under-/over-estimated in mud-rich/sand-rich systems, respectively, and the resulting errors in STOIIP and PI estimation.
  3. Organise a detailed sedimentological description into key reservoir elements and build an architectural model using those elements.
  4. Assess the basic principle of flow in porous media (Darcy) and describe how flow heterogeneity varies in layered and amalgamated clastic systems.
  5. Appraise the contrasting heterogeneities in sand- and mud-rich systems and determine how much detail is required in a reservoir description based on a consideration of fluid type and production mechanism.
  6. Evaluate how kv/kh impacts recovery in typical deepwater clastic architectures; optimally locate a well to optimize sweep for a range of architectural cases.
  7. Judge length scale variations for a typical deepwater clastic system, and discuss how this would be handled in a reservoir modelling and simulation context.

Women in Energy Field Experience: The Role of Salt in Hydrocarbon Exploitation, Energy Storage and Carbon-reduction Mechanisms, Paradox Basin, Utah and Colorado (G084)

Tutor(s)

Kate Giles: Lloyd A. Nelson Professor, University of Texas at El Paso; Consulting Geologist.

Cindy Yeilding: NE Director, Denbury Inc.

Overview

This course is aimed exclusively at women working in the energy industry, particularly in the geoscience, geotechnical and engineering fields. The primary technical goal is to provide a widely applicable introduction to the interrelationship between sedimentation and structural geology with a particular focus on salt tectonics and salt-sediment interaction. The geology is examined with reference to energy production, including hydrocarbon exploration and production, along with discussions around energy transition topics (CCUS, geothermal, hydrogen and energy storage). While the technical aspects are paramount, the course is also designed to provide networking and professional development opportunities. Evening discussions and activities will allow for exchange of ideas and experiences in a supportive and open atmosphere.

Duration and Logistics

A 5-day field course starting and finishing in Grand Junction, Colorado, comprising a mixture of field exercises, activities and networking.

Level and Audience

Fundamental. This course requires a basic understanding of geoscience and will suit those working in the geoscience, geotechnical and engineering fields. The aim is to facilitate knowledge and experience exchange among the participants, so is open to women from a very wide range of experience levels.

Exertion Level

This course requires a MODERATE exertion level. There will be hikes to outcrops of up to 6.5km (4 miles) round trip. Some of these will encounter uneven and rocky ground with some short, steep inclines. The climate in southern Utah is typically warm to hot and dry with temperatures up to 37.5°C (100°F) and the elevation is between 1,250–1,500m (4,000–5,000 ft).

Objectives

You will learn to:

  1. Describe the regional stratigraphy and principal structural features of the Paradox Basin, Utah.
  2. Characterize and interpret controls on Paradox Basin salt-related structures and key features of passive diapiric systems, including halokinetic sequences, caprock development, non-evaporite stringers / inclusions, welds, megaflaps, counter-regional faults, radial faults and burial wedges.
  3. Examine stratal geometries and halokinetic sequences and how these relate to intervals of salt inflation / evacuation and sediment flux.
  4. Assess the controls on basin fill architecture, fluid flow and deformation within the Paradox Basin and compare this to analogous salt basins worldwide.
  5. Understand the importance of salt basins to the energy industry for hydrocarbon production.

Structural Styles and Fault Characterization in Exploration and Production, Moab, Utah (G078)

Tutor(s)

Russell Davies: Director, Redlands Fault Geological Consulting LLC.

Overview

This field course utilizes outstanding exposures of faults, fault rocks and stratigraphy in Colorado and Utah to examine seismic and subseismic scale fault geometries, fault zone architecture and controls on cross-fault flow. The aim of the course is to improve the understanding of uncertainties in the mapping of complex fault zones and the processes that create potential seals and compartmentalization in reservoirs in the subsurface for oil and gas, as well as CO2. Field exercises complement classroom lectures on the interpretation of faults, seal assessment and associated risks. Group exercises are included as prospect interpretation of compartmentalization from outcrop exposures.

Duration and Logistics

A 7-day field course with a mixture of outcrop examination and discussion (70%) and supporting classroom lectures (30%). Exercises on the outcrop are designed to apply common methodologies for fault seal analysis with observed fault zone characteristics.

Level and Audience

Intermediate. This course is suitable for geologists, geophysicists and reservoir engineers engaged in the interpretation of faults and the assessment of fault seal in reservoirs for exploration, development and CO2 containment.

Exertion Level

The field component of this course requires a MODERATE exertion level. There will be some short hikes to outcrops (no more than 3.5 miles / 5.6km round trip), some over uneven and rocky ground with some short, steep inclines no greater than 700 feet (200 meters). The climate in southern Utah during the spring and fall is variable with temperatures from 50°F (10°C) to hot and dry up to 100°F (38°C). The elevation is between 4,000 and 5,000 feet (1200 to 1500 meters).

Objectives

You will learn to:

  1. Describe the regional geologic framework of the field area, the main stratigraphic units and the principal structural features.
  2. Characterize the mechanisms of faulting, fault propagation and the controls on the size, distribution and population of normal faults.
  3. Observe deformation and faults in outcrop to constrain likely structural and fault geometries in the subsurface.
  4. Characterize common trapping mechanisms and seal potential of fault rocks.
  5. Examine and assess fault rock properties and evidence of fluid flow at outcrop scale to better understand subsurface flow in reservoir and fault rocks.
  6. Establish trap and seal controls.
  7. Perform juxtaposition analysis and fault rock distribution mapping (SGR and CSF / SSF).
  8. Employ and interpret triangle diagrams.
  9. Understand key simulation techniques and modelling of faults.

Reservoir Characterization of Deepwater Systems, San Diego, California (G046)

Tutor(s)

Rene Jonk: Director, ACT-Geo Consulting and Training; Honorary Professor, University of Aberdeen.

Overview

Submarine canyons and deepwater channels are the primary conduits for the transfer of coarse sediments from the shelf to deep-water fans and they are today major targets for petroleum exploration. Southern California has had a long and complex geologic history that has involved many episodes of deepwater sedimentation in a variety of settings ranging from the Paleozoic passive margin of the North American craton to Mesozoic forearc and arc settings to Cenozoic transform, pull-apart, and continental borderland basins. These settings feature deep-water deposits in which both large and small submarine channels and fans played major roles as sediment transport routes and sites of sedimentation.

Duration and Logistics

6 days; a mix of outcrop examination and discussion (70%) and supporting classroom lectures (30%).  The field course is conducted in southern California along the coastline north of San Diego.

Level and Audience

Advanced. Geologists, geophysicists, and petroleum engineers working on deep water reservoirs from exploration to production.

Exertion Level

This class requires a MODERATE exertion level. Access to the coastal cliff outcrops is via sandy beaches, with most walks under 2 km. Some shallow wading on a sandy beach is also necessary in order to visit some outcrops.

Objectives

You will learn to:

  1. Review deepwater lithofacies nomenclature and definitions, common lithofacies associations, and interpret lithofacies in outcrops and cores.
  2. Interpret environments of deposition (EoD’s) and related reservoir architecture, lithofacies associations, and diversity.
  3. Interpret sequence stratigraphic surfaces in outcrop, logs, and seismic in DW settings and related to vertical stacking of facies.
  4. Use core and well-logs to interpret EoD’s.
  5. Evaluate reservoir geometry and connectivity in different EoD’s.
  6. Recognise the Do’s and Don’ts of using outcrops as reservoir analogs
  7. Apply outcrop information as analog for reservoir model building
  8. Evaluate seismic response, including geometry, facies, and acoustic response in deepwater EoD’s
  9. Apply the criteria for the identification of Composite Sequences, Sequence Sets, and Depositional Sequences and their components in outcrops, cores, well logs, and seismic
  10. Use interpretation and mapping techniques for cores, well-logs, and seismic lines in deepwater settings, from Exploration to Production business scales
  11. Apply criteria and mapping strategies for play elements in deepwater depositional settings
  12. Identify and map play fairways in deepwater settings.

Reservoir Geology for Engineers, Colorado and Utah (G061)

Tutor(s)

Mike Boyles: Retired Shell Oil; Affiliate Faculty, Colorado School of Mines.

Overview

The course investigates world-class outcrops to introduce engineers to a wide spectrum of stratigraphic and structural features commonly found in exploration and production. An active learning technique encourages participants to make initial observations and interpretations before group discussions. Lectures and exercises provide awareness of reservoir architecture while outcrops demonstrate field- and reservoir-scale heterogeneities. Depositional environments studied include deltaic, eolian, fluvial, turbidites, tidal and coastal plain with emphasis placed on understanding flow characteristics (i.e. connectivity, Kv, Kv/Kh).

Duration and Logistics

7 days; a mix of classroom lectures (10%) and field exercises (90%). The course begins and ends in Grand Junction, Colorado, and visits outcrops in Utah and Colorado.

Level and Audience

Fundamental. The material is presented with minimal jargon so that engineers get the full benefit of the course.

Exertion Level

This class requires a MODERATE exertion level. Scrambling over rock outcrops and steep sections will be required, but most hikes would be considered moderate. The longest walk is approximately 4.8km (3.2 miles). Outcrops are at elevations of 1200–2500m (4000–8200 ft). Weather conditions in NW Colorado and eastern Utah can vary from warm and dry to cold and wet, with an early fall temperature range of 5–23°C (41–73°F). Transport will be in SUVs on black-top and unpaved roads.

Objectives

You will learn to:

  1. Appreciate the differences between a range of depositional settings, their facies and related reservoir architecture.
  2. Use geologic knowledge to reduce reservoirs into flow units.
  3. Gain a better understanding of major events that influence deposition and help to understand reservoir geometries and scale.
  4. Evaluate the impact of modeling stochastic properties versus organized trends.
  5. Understand the dangers of upscaling and if it makes geologic sense.
  6. Use detailed sector models to understand how to capture subtle variations in the geology.
  7. Appreciate how to use the geology to make upscaling decisions by building detailed sector models to understand the impact of upscaling decisions.

Understanding Faults, Fault Seal and Fault Rupture: Applications to Fluid Trapping, Pressure Containment and Induced Seismicity, Moab, Utah (G058)

Tutor(s)

Bob Krantz: Consulting Geologist and Adjunct Professor, University of Arizona.

Peter Hennings: Consulting Geologist and Research Scientist and Lecturer, UT Austin, Texas.

Overview

This course provides an analysis-level treatment of fault geometry, characterization of seal effectiveness, and assessment of rupture hazard with application to hydrocarbon exploration, reservoir development and management, fluid pressure containment analysis for CCS, and induced seismicity hazard assessment. The Moab fault system and surrounding geology provide exceptional examples of trap-scale structures with fault zone characteristics that vary depending on offset and juxtaposed rock type, and which are documented to have both sealed and leaked over geologic time in patterns that are clearly expressed. Reframing these outcrops to subsurface application is immensely valuable in understanding static and dynamic fault behavior.

Duration and Logistics

6 days; classroom lectures (30%), practical exercises (30%) and field visits to some of Earth’s best-exposed and thoroughly studied outcropping fault systems (40%).

The course is based in Moab, Utah, with participants arriving in and departing from Grand Junction, Colorado.

Level and Audience

Advanced. This course is intended for geoscientists and reservoir engineers who work with layered faulted reservoirs. Participants would benefit from having a basic familiarity with structural geology.

Exertion Level

This class requires a MODERATE exertion level. The fieldwork will involve walking up and down slopes over rough ground. There will be walks of up to 1.6km (1 mile) on most days, the most strenuous being an ascent (and descent) of 100m (330 ft) over rocky ground as part of a 3.2km (2 miles) walk. The altitude of the field area ranges from 1200–1750m (4000–5800 ft), which may lead to unexpected shortness of breath for some. The weather should be pleasant with typical highs of 27°C (80°F) in the fall, but early morning temperatures may be below 5°C (40°F) and highs could reach 32° (90° F) on some days. Transport will be by mini-van or SUV on paved and graded dirt roads.

Objectives

You will learn to:

  1. Describe fault geometry and how they form, displace and link in 2-D and 3-D.
  2. Understand how fault systems evolve over geologic time.
  3. Characterize controls on mechanical stratigraphy.
  4. Apply 3-D fault framework interpretation methods.
  5. Identify fault zone deformational fabrics and mechanics.
  6. Develop reservoir compartmentalization models.
  7. Understand static and dynamic fault seals, fault permeability and seal effectiveness.
  8. Predict fault reactivation likelihood for application to seal failure, containment breach, and induced seismicity.

Applied Concepts of Natural Fractures: Mechanics and Characteristics in Outcrop and Core, New Mexico (G049)

Tutor(s)

John Lorenz: Co-founder and Partner, FractureStudies LLC.

Scott Cooper: Co-founder and Partner, FractureStudies LLC.

Overview

Outcrops in central New Mexico offer excellent examples of natural fractures in a variety of structural settings and lithologies. They illustrate the mechanical and stratigraphic controls on the fracture systems that in turn control permeability in most conventional and unconventional reservoirs. A world-class example of permeability-reducing shear fractures (“deformation bands”) will be visited, occurring in fluvial sandstones of the Morrison Formation. The outcrops to be visited also show fractures associated with faulting, as well as the complications associated with reactivation of extension fractures in shear. An exposition of the authors’ 65-piece teaching collection of natural and induced fractures in core is part of the course, providing the chance to compare one-dimensional core fracture data with the three-dimensional data provided by outcrops.

Duration and Logistics

5 days; a mix of classroom lectures (15%), field time (75%) and core/hand sample workshop (10%).  The course begins and ends in Albuquerque, New Mexico.

Level and Audience

Advanced. This course is intended for geoscientists, reservoir and production engineers, and petrophysicists who need to characterize and understand fracture systems and their effects on reservoir permeability from core and outcrops; who need to be able to differentiate between natural and induced fractures in cores; and who would like to be able to predict the effects of lithology on fracturing. It is also for those who want to understand fracture permeability in relationship to the in situ stress system, the interaction of natural fractures with hydraulic stimulation fractures, and the important differences between extension and shear fractures in controlling individual fracture permeability and fracture network interconnectedness.

Exertion Level

This class requires a MODERATE exertion level. The fieldwork will involve walking up and down slopes over rough ground. There will be walks of up to 1.6km (1 mile) on most days, the most strenuous being an ascent (and descent) of 60m (200 ft) over rocky ground as part of a walk of 3km (2 miles). The elevation range is 1600-2200m (5300-7200 ft), which may lead to unexpected shortness of breath for some. The central New Mexico weather in the fall is cool-warm and dry, and often windy. Transport is by SUVs. Most driving is on black-top roads, but some areas are reached by gravel or dirt roads.

Objectives

In this hands-on, application-based field trip you will learn to:

  1. Assess the origins of fractures.
  2. Understand characteristics and distributions of different types of natural fractures and their potential effects on reservoir permeability.
  3. Differentiate fractures by type, as well as predict what fracture types to expect in different structural domains and reservoirs, through discussion on the outcrop.
  4. Assess the interactions between natural fractures, in situ stresses and stimulation fractures.
  5. Appreciate the wide range of structures that fall under the basket term “fracture”, and recognize that different fracture types do not have the same effect on hydrocarbon reservoirs.